

فهرست مطالب
۵۵- چکیده
۲- کلیدواژه۵
۵۵
۵٩- مقدمه
۵- دامنه گزارش
۶- پنجره اصلی ورود به برنامه
۷- ثبت دادههای ورودی۷
۸- ثبت دادههای مربوط به مشخصات سوخت۸
۹- ملاحظات مربوط به ثبت دادهها و تغییرات ناگهانی توان و شرایط سیال
۱۰- دستهبندی پارامترهای خروجی کد PARS برای ترسیم نتایج
۱۱– ذخیره نمودن نمودار
۱۲– امکانات منوی نرمافزار

ليست شكلها
شکل ۱: پنجره اصلی کد
شکل ۲: روش تعریف تقسیمبندی فواصل محوری
شکل ۳: مقادیر ارتفاع مورد نظر برای هر یک از فواصل محوری
شکل ۴: پیغام خطا در صورت ثبت مقادیر ارتفاع خارج از بازه
شکل ۵: تعیین ضریب تبدیل توان به شار نوترون (یکسان برای همه سطوح) در جهت محوری
شکل ۶: تغییر مقادیر مربوط به ضریب تبدیل توان به شار نوترون برای هر یک از سطوح در جهت محوری۱۵
شکل ۷: ثبت دادههای مربوط به مشخصات میله سوخت
شکل ۸: ثبت دادههای مربوط به تاریخچه عملکرد میله سوخت
شکل ۹: تعیین ضرایب توزیع توان محوری در زمانهای مختلف
شکل ۱۰: انتخاب صفحات برای تعیین مقادیر تاریخچه کارکرد سوخت
شکل ۱۲: تأیید ورودیها و اجرای برنامه
شکل ۱۳: صفحه خروجی های برنامه
شکل ۱۴: پارامترهای متغیر با زمان
شکل ۱۵: رسم نمودار دینامیک تغییرات پارامتر متغیر با زمان در جهت محوری
شکل ۱۶: رسم نمودار استاتیک برای تغییر پارامتر با زمان در یک جهت محوری معین
شکل ۱۷: رسم نمودار تغییرات پارامتر با تغییرات Burn up در یک سطح محوری معین
شکل ۱۸: نمودار دینامیک تغییرات پارامتر در جهت شعاعی با زمان در یک سطح محوری معین
شکل ۱۹: ذخیرهسازی نمودارهای خروجی

جدولها	ليست
--------	------

جدول شماره ۱: دادههای ورودی مورد نیاز حل مساله برای کد PARS
جدول شماره ۲: پارامترهای عمومی برای رسم نمودار تغییرات در طول زمان
جدول شماره ۳: پارامترهای خروجی متغیر با زمان یا Burn up در جهت محوری
جدول شماره ۴: پارامترهای خروجی متغیر با زمان در جهت شعاعی

۱- چکیدہ

میله سوخت به عنوان یکی از مهمترین اجزای یک راکتور هستهای است که تحلیل رفتار آن در شرایط پایا و گذرا نیازمند ابزارهای محاسباتی قدرتمند میباشد. در کد محاسباتی PARS رفتار حرارتی-مکانیکی سوخت در شرایط پایا بر اساس اطلاعات ورودی تحلیل شده و خروجی کد به صورت نمودارهای تحلیلی مشاهده می گردد. در این گزارش نحوه کار با واسط کاربر گرافیکی کد برای اعمال دادههای ورودی و مشاهده نمودارهای خروجی توضیح داده شدهاست.

۲- کلیدواژه

کد محاسباتی، رفتار حرارتی-مکانیکی سوخت، شرایط پایا

۳- اختصارات

توضيح	عبارت اختصاری	عبارت
کد تحلیل عملکرد میله سوخت در شرایط پایا	PARS	Performance Analysis of the fuel Rod in Steady state
راکتور آب تحت فشار	PWR	Pressurized Water Reactor
راکتور آب جوشان	BWR	Boiling Water Reactor

۴– مقدمه

کد تحلیل عملکرد میله سوخت (PARS) برای شرایط پایا توسعه داده شدهاست. این کد قابلیت شبیهسازی میلههای سوخت اکسید اورانیوم با غلاف آلیاژ زیرکونیوم را دارا میباشد و برای راکتورهای هستهای آب تحت فشار (PWR) و آب جوشان (BWR) مناسب است. با توجه به این که هدف، بررسی عملکرد میله سوخت در مدت زمان دوره کاری یک یا چند ساله و شرایط کارکرد عادی میله سوخت است و تغییرات در پارامترها به کندی اتفاق میافتد، میتوان مسأله را به صورت پایا در نظر گرفت و مدلسازی برای زمانهای کاری مختلف نیز به صورت پایا صورت می گیرد. مدلهای موجود در کد PARS عبارتند از: توزیع محوری خواص سیال، توزیع شعاعی توان با حل همزمان معادلات مصرف سوخت، توزیع دمای سوخت با روش اختلاف محدود، تغییر شکل سوخت با لحاظ پدیدههای تورم، چگالش، انبساط حرارتی، تَرَک و بازیابی آن، تنش-کرنش الاستیک در غلاف در شرایط شکاف باز و بسته، تنش-کرنش پلاستیک غلاف در شرایط شکاف باز و بسته، تنش-کرنش فشار گرفت و رها شدن محصولات شکاف باز و بسته، تنش-کرنش فشار گاز، ضریب انتقال حرارت شکاف و ترکیب با هیدروژن.

۵- دامنه گزارش

در این گزارش به مجموعه اطلاعات ورودی مورد نیاز برای محاسبات کد PARS و نیز گستره خروجیهای این کد پرداخته شدهاست. پنجره اصلی برنامه و مراحل ورود اطلاعات، کاربرد هر یک از اقلام موجود و نحوه دسترسی به اطلاعات و نمودارهای خروجی به تفصیل آمده است.

۶- پنجره اصلی ورود به برنامه

با اجرای برنامه PARS، برنامه به پنجره اصلی کد وارد میشود که توضیح مختصری درباره کد محاسباتی و اطلاعات مورد نیاز کاربر در آن آمدهاست. منوی برنامه شامل شستیهای زیر است:

- Save Input و Save Input برای ذخیره کردن اطلاعات ورودی جهت بارگذاری مجدد در برنامه،
 - Open Input جهت بارگذاری مقادیر ورودی ذخیرهشده از قبل،
- Run که پس از اتمام مراحل ثبت ورودی ها و تایید نهایی، فعال شده و با فشردن آن محاسبات کد
 انجام می پذیرد،
- Save Plot که پس از اجرای کد و انجام محاسبات و ورود برنامه به صفحه خروجی و رسم نمودارها فعال شده و با فشردن آن نمودارِ نمایشداده شده به صورت فایل با پسوندهای png یا jpg ذخیره می گردد.

شکل ۱: پنجره اصلی کد

۷– ثبت دادههای ورودی

با فشردن شستی START در اولین صفحه، برنامه به صفحات ورود اطلاعات منتقل میشود. در سه مرحله و در صفحات متوالی به ترتیب ِ ذیل، دادههای ورودی ثبت شده و با فشردن شستی Next در پایین هر صفحه برنامه به صفحه متناظر با دسته بعدی دادهها وارد میشود. در هربار بارگذاری برنامه، دادههای پیشفرض برای مسأله در نظر گرفته شده و کاربر قادر است هر یک از آنها را با توجه به بازه مقادیر قابل قبول در کد محاسباتی، تغییر دهد. در صورت ورود دادههای خارج از محدوده قابل قبول، پنجره خطا به کاربر نمایش داده خواهد شد و ضمنِ اشاره به بازه مورد قبول، بار دیگر مقادیر پیشفرض برای آن داده جایگزین می گردد. دادههای مورد نیاز برنامه در جدول شماره ۱ آمده است.

شماره	نام پارامتر	نوع پارامتر و نحوه ورود	توضيحات
١	Reactor type	انتخاب گزینهای	نوع راكتور
٢	Lattice type	انتخاب گزینهای	نوع شبکه میلهها در مجتمع

جدول شماره ۱: دادههای ورودی مورد نیاز حل مساله برای کد PARS

شماره	نام پارامتر	نوع پارامتر و نحوه ورود	توضيحات
٣	Pellet type	انتخاب گزینهای	نوع قرص سوخت
۴	Clad type	انتخاب گزینهای	جنس مادہ غلاف
۵	Number of axial intervals	Integer، بین ۴ تا ۳۰	تعداد تقسيمبندي محوري ميله سوخت
۶	Number of radial nodes in the fuel	Integer، بین ۵ تا ۴۰	تعداد گرههای شعاعی در سوخت
Y	Number of time steps	Integer، برابر یا بزرگتر از ۱	تعداد بازههای زمانی و توانی که بایستی در ابتدا قبل از فراخوانی حلگر محاسبه شود.
٨	Number of axial power shapes	Integer، برابر یا بزرگتر از ۱	تعداد منحنىهاى توزيع محورى توان
٩	Gap conductance method	انتخاب گزینهای	روش محاسبات ضریب انتقال حرارت شکاف
١.	Fast flux coefficient	انتخاب گزینهای	ثابت یا متغیر درنظر گرفتن ضریب تبدیل توان به شار نوترون در جهت محوری
11	Axial interval size	انتخاب گزینهای	روش تعريف تقسيمبندى فواصل محورى
١٢	Fuel conductivity correlation	انتخاب گزینهای	رابطه انتخابی برای ضریب هدایت حرارتی سوخت
١٣	Fission gas release model	انتخاب گزینهای	مدل انتخابی برای محاسبات رهایش گاز
14	Enrichment	انتخاب گزینهای	روش دادن غنای سوخت
١۵	Radial mesh generation	انتخاب گزینهای	روش انتخابی برای نوع تقسیم،بندی شعاعی
18	Geometrical coefficient	Real، بین ۱ تا ۱/۲	قدر نسبت هندسی برای تقسیمبندی شعاعی
١٧	End time of cycle	Real، بزرگتر از صفر بر حسب روز	تعداد کل روزهای کارکرد میله
١٨	Total fuel length	Real، بین ۵/۵ تا ۴ بر حسب متر	ارتفاع بخش فعال ميله سوخت
(III)			AN

شماره	نام پارامتر	نوع پارامتر و نحوه ورود	توضيحات
١٩	Cladding outer diameter	Real، بین ۰/۰۰۸ تا ۰/۰۱۴ بر حسب متر	قطر خارجی غلاف
۲.	Cladding thickness	Real، بین ۲/۰۰۰۵ تا ۲/۰۰۰ بر حسب متر	ضخامت غلاف
٢١	gap thickness	Real، بین ۲۰۰۰۰۵ تا ۰/۰۰۰۲ بر حسب متر	ضخامت شکاف گازی اولیه
٢٢	Pellet Height	Real، بین ۰/۰۰۹ تا ۰/۰۲ بر حسب متر	ارتفاع قرص سوخت
٢٣	Height of pellet dish	Real، بین ۲/۰۰۰۳ تا ۰/۰۰۱ بر حسب متر	ارتفاع بشقاب سوخت
74	Pellet end dish shoulder width	Real، بین ۰۱/۰۰۱ تا ۰/۰۰۳ بر حسب متر	پهنای شانه بشقاب سوخت
٢۵	Fuel roughness	Real، بین 8-1E10 تا 1E10-5 بر حسب متر	زبری سوخت
75	Cladding roughness	Real، بین 8-1E10 تا 1E10-5 بر حسب متر	زبری غلاف
٢٧	Coolant flow area	Real، بین 5-1.35E10 تا 14.5E10 بر حسب متر مربع در صورتی باید وارد شود که Lattice از نوع Favourite انتخاب شده باشد.	سطح عبوری سیال
٢٨	Channel wetted perimeter	Real، بین 2.5E10 تا 10E10-2 بر حسب متر در صورتی باید وارد شود که Lattice از نوع Favourite انتخاب شده باشد.	محیط تر شدہ

توضيحات	نوع پارامتر و نحوه ورود	نام پارامتر	شماره
محیط گرم شدہ	Real، بین ۲/۰۲۵ تا ۲/۰۵ بر حسب متر در صورتی باید وارد شود که Lattice از نوع Favourite انتخاب شده باشد.	Channel heated perimeter	٢٩
گام شبکه میله سوخت	Real، بین ۰/۰۰۸ تا ۰/۰۱۴ بر حسب متر	Lattice pitch	٣٠
طول محفظه بالايى	Real، بین ۰/۰۴ تا ۰/۵ بر حسب متر	Upper plenum length	۳۱
قطر خارجی فنر	Real، کوچکتر از دوبرابر قطر خارجی غلاف و بزرگتر از ضخامت غلاف بر حسب متر	Outer diameter of plenum spring	٣٢
قطر مفتول فنر	Real، بین ۲۰۰۰۵ تا ۰/۰۰۲ بر حسب متر	Diameter of the plenum spring wire	٣٣
تعداد دور فنر	Integer، بین ۵ تا ۱۰۰	Number of turns in the plenum spring	٣۴
طول محفظه پایینی	Real، (در صورتی که غیرصفر باشد) بین ۰/۰۵ تا ۰/۰ بر حسب متر	Lower plenum length	۳۵
قطر داخلی محفظه پایینی	Real، کوچکتر از: قطر خارجی غلاف منهای دو برابر ضخامت غلاف بر حسب متر	Inner diameter of Lower plenum	٣۶
غنای سوخت	Real، بین ۷/۷ تا ۱۰ بر حسب درصد	Fuel enrichment	۳۷
چگالی نسبی سوخت	Real، بین ۹۰ تا ۱۰۰ بر حسب درصد	Relative fuel density	۳۸
افزایش چگالی سوخت در پدیده تفتجوشی مجدد	Real، بین ۰ تا ۲۰۰ بر حسب kg/m ³	The increase in fuel density expected during reactor operation	٣٩

توضيحات	نوع پارامتر و نحوه ورود	نام پارامتر	شماره
دمای تفتجوشی سوخت	Real، بین ۱۲۰۰ تا ۲۰۰۰ بر حسب کلوین	Fuel sintering temperature	۴.
فشار گاز اولیه داخل میله سوخت	Real، بین ۰/۱ تا ۶ بر حسب MPa	Initial gas pressure of fuel rod	41
مقدار ضخامت لایه خمیری اولیه	Real، در این نسخه از برنامه مقدار آن در محاسبات صفر در نظر گرفته میشود.	Initial crud thickness	47
حداکثر گام زمانی محاسباتی	Real، بین ۰/۰۵ تا ۱۰ بر حسب روز	Maximum time step limit in calculation	۴۳
ارتفاع هر بخش محوری	Real، بین ۰/۰۵ تا ۰/۵ بر حسب متر	Height of each axial interval	44
ضریب تبدیل توان به شار نوترون	Real، بین 1.6E+17 تا 1.6E+17	Fast flux coefficient of each axial interval	40
ضرایب توزیع توان محوری در زمانهای مختلف	Real، بین ۰ تا ۲	Normalized relative axial power factors	45
تاریخچه تغییرات توان خطی میله سوخت (بهتر است تغییر در هر گام زمانی از W/cm کمتر باشد)	Real، بین ۰ تا ۵۰۰ بر حسب W/cm	Average linear power history	۴۷
تاریخچه تغییرات دمای ورودی سیال (دمای ورودی سیال باید از دمای اشباع کمتر باشد)	Real، بین ۲۰۰ تا ۳۲۰ بر حسب C°	Coolant inlet temperature history	۴۸
تاریخچه تغییرات شار دبی جرمی سیال	Real، بین ۵۰۰ تا ۶۰۰۰ بر حسب kg/m²s	Coolant mass flux history	49
تاریخچه تغییرات فشار سیال خنک کننده	Real، بین ۵ تا ۱۷ بر حسب MPa	Coolant Pressure history	۵۰
تاریخچه تغییرات شکل محوری توان میله سوخت	Integer، بین ۱ تا ۳۰	Fuel Rod Axial power shape history	۵١

۷-۱- ثبت دادههای مربوط به پارامترها و روشهای کلی حل مسأله

در مرحله نخستِ ثبت دادههای ورودی، صفحه مربوط به General Parameters and Methods به کاربر نمایش داده می شود. کاربر در این صفحه، نوع راکتور، نوع شبکه میلهها در مجتمع، روش انتخابی برای نوع تقسیم بندی شعاعی میله سوخت و سایر مقادیر مورد نیاز را انتخاب یا وارد می کند.

نکته قابل توجه در این مرحله وارد کردن اطلاعات مربوط به روش تعریف تقسیم بندی فواصل محوری و نیز ثابت یا متغیر درنظر گرفتن ضریب تبدیل توان به شار نوترون در جهت محوری است. در صورتی که تقسیم بندی در فواصل متفاوتی در جهت محوری مد نظر باشد، مطابق شکل ۲، کاربر ضمن انتخاب گزینه Unequal Coefficient با کلیک بر روی شستی Enter Each Axial Interval وارد صفحه Axial Interval شده و قادر است مقادیر ارتفاع مورد نظر برای هر یک از فواصل محوری را به طور جداگانه وارد کند. چنان که در شکل ۳ نشان داده شده است، به طور پیش فرض متناسب با اطلاعات ورودی کاربر مقادیر یکسانی برای ارتفاع هر یک از فواصل محوری در نظر گرفته شده-است. کاربر می تواند به طور جداگانه هر یک از این مقادیر را تغییر داده و یا با باز کردن یک صفحه Excel حاوی داده، کلیه مقادیر را متناظر با سطر و ستونهای جدول از سلولهای صفحه Excel مروی در نظر گرفته شده-کلیه مقادیر را متناظر با سطر و ستونهای جدول از سلولهای صفحه Axial الدو یا با بازکردن یک صفحه ای کرده و سپس

PWR BWR attice Type Square Lattice Pitch (m): 0.012827 Favourite Channel Flow Area (m ²): Channel Wetted Perimiter (m): Channel Heated Perimeter(m): walal Interval Size Same For All Axial Intervals Enter Each Axial Interval	Active Fuel Length (m): U.975 Number of Axial Intervals: 9 Number of Radial Nodes in Fuel: 17 Radial Mesh Generation in Fuel © Geometrical Progression Geometrical Coefficient 1.15 Same Volume Same Intervals	Active Fuel Length
Past Flux Coefficient Same For All Axial Intervals Unequal Coefficients Enter Fast Flux Coefficient for Each Axial Interval	Fission Gas Release Model Modified Forsberg and Massih Beyer Vitanza	Gap Conductance Method
D Help		Next > Cancel

	Height of Each Axial Interval (m)	
1	0.10833333333333	
2	0.108333333333333	
3	0.108333333333333	
4	0.1083333333333333	
5	0.10833333333333	
6	0.1083333333333333	
7	0.108333333333333	
8	0.108333333333333	
9	0.1083333333333333	
9	0.1083333333333	

شکل ۳: مقادیر ارتفاع مورد نظر برای هر یک از فواصل محوری

قبل از خروج از صفحه، کاربر با انتخاب شستی Apply دادههای ورودی را تایید می کند. در صورتی که مقادیر وارد شده در بازه مقادیر مورد قبول نبوده و یا دادههای Insert شده از روی Clipboard با قالب دادههای جدول مطابقت نداشتهباشد، برنامه مطابق شکل ۴ به کاربر پیغام خطا داده و مشخص می کند در کدام سطح، مقادیر وارد شده مورد قبول نمی باشد.

2 0.108333333333 3 2.23232 4 0.1083333333333 5 Error × 6 7 8 9 Invalid data on level 3! Height of each axial interaval must be greater than 0.05m and less than 0.5m! OK	1	0.108333333	3333333						
3 2.23232 4 0.10833333333333 5 Error 6 7 7 8 9 Invalid data on level 3! Height of each axial interaval must be greater than 0.05m and less than 0.5m! OK	2	0.108333333	3333333						
4 0.10833333333333333333333333333333333333	▶ 3	2.23232							
5 6 7 8 9 Invalid data on level 3! Height of each axial interaval must be greater than 0.05m and less than 0.5m! OK	4	0.108333333	3333333						
6 7 8 9 Nvalid data on level 3! Height of each axial interaval must be greater than 0.05m and less than 0.5m! OK	5	Error						×	
7 8 8 9 9 Height of each axial interaval must be greater than 0.05m and less than 0.5m! OK	6								
8 9 9 OK	7			1.21					
9 0.5ml	8		Invalid data on i Height of each a	evei 3: ixial interaval mu	ist be greater th	an 0.05m and	less than		
ОК	9		0.5m!						
Insert Values From Clipboard Apply Cancel							OK		
	Insert \	Values From ارج از بازد	n Clipboard ر ارتفاع خا	ثبت مقادي	در صورت	Apply یغام خطا	ок , :۴	Cano شکل	cel

JJ

ثابت یا متغیر درنظر گرفتن ضریب تبدیل توان به شار نوترون در جهت محوری نیز مطابق شکل ۵ در قسمت Fast Flux Coefficient توسط کاربر تعیین می گردد. در صورتی که کاربر این ضریب را ثابت در نظر بگیرد، با انتخاب کلید Same for All Axial Intervals و وارد کردن مقدار مورد نظر در جعبه متن مقابل آن، ثبت داده را انجام می دهد. در شرایطی که کاربر در نظر دارد در سطوح متفاوت محوری مقادیر متفاوتی را برای ضریب تبدیل توان وارد کند، ضمن انتخاب کلید Unequal Coefficient for Each Axial بر روی شستی Interval می دهد. با ورود به این صفحه، کاربر در جدول، ابتدا مقادیر پیش فرض را که به طور یکسان در نظر گرفته شده است، مشاهده می کند و می تواند به همان ترتیب که در مورد صفحه المور که به طور یکسان در نظر گرفته شده است، مشاهده می کند و می تواند به همان

PARS		_ 5 ×
Save Input Save Input As	Open Input 🔅 Run	Save Plot
Step 1 of 3: General Parameters and Methods		
Reactor Type PWR BWR	Active Fuel Length (m): 0.975 Number of Axial Intervals: 9	$\Delta r_i \Delta r_{i+1}$
Lattice Type Square Lattice Pitch (m): 0.012827	Number of Radial Nodes in Fuel: 17	
Favourite Channel Flow Area (m ⁴): Channel Wetted Perimiter (m): Channel Heated Perimeter(m):	Radial Mesh Generation in Fuel Geometrical Progression Geometrical Coefficient: 1.15	Geometrical Progression
Axial Interval Size Same For All Axial Intervals Unequal Coefficients Enter Each Axial Interval	Same Volume	$\begin{array}{c} \text{Geometrical} \\ \text{Coefficient} \end{array} = \frac{\Delta r_i}{\Delta r_{i+1}} \end{array}$
Fast Flux Coefficient Same For All Axial Intervals Tenegual Coefficients Enter Fast Flux Coefficient for Each Axial Interval	Fission Gas Release Model Modified Forsberg and Massih Beyer Vitanza	Gap Conductance Method Ross & Stoute (FRAPCON3.5) Ross & Stoute (BISON 1.1) Ross & Stoute (FRAPTRAN1.4)
⑦ Нер	<u></u>	Next > Cancel

شکل ۵: تعیین ضریب تبدیل توان به شار نوترون (یکسان برای همه سطوح) در جهت محوری

Save Input As	New Input Open Input 🙀 Run	Save Plot Kinical Report About
Step 1 of 3: General Parameters ar	d Methods	
Reactor Type	See Fast Flux Coefficient for each Axial Interval	×
PWR	P Fast Flux Coefficient for each axial interval	Channel Barry and
Square Lattice Pitch (m): 0.012827 Square Channel Flow Area (m ³): Channel Wetted Perimiter (m): Channel Heated Perimeter(m): Axial Interval Size Same For All Axial Intervals Unequal Coefficients	2 21E+16 3 21E+16 4 21E+16 5 21E+16 6 21E+16 7 21E+16 8 21E+16 9 21E+16 9 21E+16 9 21E+16	Channel wetted perimeter Channel heated perimeter Channel flow area Channel wetted perimeter Channel heated perimeter
Fast Flux Coefficient Same For All Axial Intervals Fast Flux Coefficient Value Unequal Coefficients Enter Fast Flux Coefficient for Each Axia	Insert Values From Clipboard Apply	Cancel iductance Method Ross & Stoute (FRAPCON3.5) Ross & Stoute (BISON 1.1) Ross & Stoute (FRAPTRAN1.4)

شکل ۶: تغییر مقادیر مربوط به ضریب تبدیل توان به شار نوترون برای هر یک از سطوح در جهت محوری

پس از تکمیل دادههای ورودی این مرحله، کاربر با کلیک بر روی شستی Next در پایین صفحه به صفحه بعد هدایت می شود. کاربر در هر مرحله می تواند با زدن شستی Back به مرحله قبل بازگشته و دادههای وارد شده را در صورت لزوم تغییر دهد.

۸- ثبت دادههای مربوط به مشخصات سوخت

مرحله دوم ثبت دادههای مربوط به میله سوخت است. چنان که در شکل ۷ نشان داده شده است، در این قسمت کاربر اطلاعات مربوط به نوع قرص سوخت، ماده غلاف، رابطه انتخابی برای ضریب هدایت حرارتی سوخت، غنا، چگالی و سایر مشخصات سوخت را وارد می کند. هنگام ورود داده ها در برخی موارد، کاربر با حرکت دادن ماوس بر روی پارامتر مورد نظر می تواند شکل متناظر آن را نیز در جعبه تصویر در صفحه مشاهده نماید.

شکل ۷: ثبت دادههای مربوط به مشخصات میله سوخت

پس از ثبت دادههای مربوط به مشخصات سوخت، کاربر با کلیک بر روی شستی Next به آخرین مرحله از ثبت دادههای ورودی مرتبط با Operating History که در شکل ۸ نشان داده شده است وارد می شود. در این صفحه کاربر ابتدا تعداد کل روزهای کارکرد میله، تعداد منحنیهای توزیع محوری توان و حداکثر گام زمانی محاسباتی را وارد می نماید. ضرایب توزیع توان محوری در زمانهای مختلف پس از مشخص نمودن تعداد منحنیهای توزیع محوری توان با فشردن شستی Toppic A محوری در زمانهای مختلف پس از مشخص نمودن تعداد منحنیهای توزیع محوری شستی مطابق شکل ۹ صفحه جدیدی برای کاربر باز می شود که جدول ضرایب توزیع توان محوری برای زمانهای مختلف در آن مشخص شده و مقادیر هر یک از ضرایب توسط کاربر تعیین شده و یا از روی فایل Toppic مناظر، با کپی بر روی Clipboard و Clipboard در محوری در حوال مربوطه وارد می شود. در صورتی که کاربر مقدار پیش فرض تعداد منحنیهای توزیع توان را تغییر ندهد مقادیر پیش فرض در جدول نمایش داده می شود.

	ave Input	ave Input As	New Input	Open Input	Run Run	Savi	e Plot	echnical Report	About	
Step 3	of 3: Operati	ng History								
End Time	e of Cycle (day): 1000			Ni	mber of Axial Power Sha	ipe: 5	Norm	alized Relative Axial I	Power	
Maximur	m Time Step Limit in Calo	ulating Time Steps (day)	2] Save the Results only of	n Input Time Steps				
Average	Linear Power History	C No. Tim	e (day) Value (V	V/cm) 25	0					
Coolant	Inlet Temperature His	tory 2 2	200 180)						
Coolant	Mass Flux History	4 0	500 200		0-	e	ب ۲	•		
Coolant	Pressure History		500 150	2 2 15	0-					
Fuel Roo	d Axial Power Shape H	story		ar Po						
		_		e Line	0 -					
				verag						
				ح 5	0 -					
					0 100 :	200 300 4	100 500 60	0 700 800	900 10	00
							Time (day)			
Help								< Back Confir	m Input Canc	el
		سوحت	ىرد مىنە ،	ريحچه عما	ىربوط بە ت	دادەھاى م	کل ۸: ثبت	شک		
		سوحت	كرد مينه ر	ريحچه عم	ىربوط بە ت	دادەھاى م	کل ۸: ثبت	شک	Г	
Normal	ized Relative Axi	سوحت I Power	لكرد مينه	ريحچه عما	لربوط به ت	دادەھاى م	کل ۸: ثبت	شک	[×
Normal	Axial Level 1	al Power Axial Level 2	Axial Level 3	ریحچه عما Axial Level 4	Axial Level 5	دادههای ه Axial Level 6	کل ۸: ثبت Axial Level 7 1 1542	شک Axial Level 8	Axial Level 9	×
Normal	ized Relative Axia Axial Level 1 0.6207 0.6731	Axial Level 2 0.9219 0.9356	Axial Level 3 1.1542 1.1316	ریحچه عم Axial Level 4 1.2981 1.2554	Axial Level 5 1.3498 1.3011	دادههای Axial Level 6 1.301 1.2592	کل ۸: ثبت Axial Level 7 1.1542 1.1326	شت Axial Level 8 0.9261 0.937	Axial Level 9 0.624 0.6775	×
Normal	ized Relative Axia Axial Level 1 0.6207 0.6731 0.7409	Axial Level 2 0.9219 0.9356 0.951	Axial Level 3 1.1542 1.1316 1.1086	ريحچه عم منابع Axial Level 4 1.2981 1.2554 1.2013	Axial Level 5 1.3498 1.3011 1.2339	دادههای م Axial Level 6 1.301 1.2592 1.2047	کل ۸: ثبت Axial Level 7 1.1542 1.1326 1.104	Axial Level 8 0.9261 0.937 0.9488	Axial Level 9 0.624 0.6775 0.7463	×
Normal	ized Relative Axia Axial Level 1 0.6207 0.6731 0.7409 0.6673 0.6997	Axial Level 2 0.9219 0.9356 0.951 0.9204	Axial Level 3 1.1542 1.1316 1.1086 1.1255 1.1152	Axial Level 4 1.2981 1.2554 1.2013 1.2178 1.1922	Axial Level 5 1.3498 1.3011 1.2394 1.1992	دادههای م Axial Level 6 1.301 1.2592 1.2047 1.2597 1.206	کل ۸: ثبت Axial Level 7 1.1542 1.1326 1.104 1.1851 1.1401	Axial Level 8 0.9261 0.937 0.9488 0.9841 1.0109	Axial Level 9 0.624 0.6775 0.7463 0.6918 0.700	×
Normal	ized Relative Axia Axial Level 1 0.6207 0.6731 0.7409 0.6673 0.6997 0.9156	Axial Level 2 0.9219 0.9356 0.951 0.9204 0.9573 1.052	Axial Level 3 1.1542 1.1316 1.1086 1.1255 1.1153 1.0771	Axial Level 4 1.2981 1.2554 1.2013 1.2178 1.1832 1.0481	Axial Level 5 1.3498 1.3011 1.2339 1.2394 1.1902 1.0141	Axial Level 6 1.301 1.2592 1.2047 1.2597 1.206 1.0196	کل ۸: ثبت Axial Level 7 1.1542 1.1326 1.104 1.1851 1.1401 1.0437	Axial Level 8 0.9261 0.937 0.9488 0.9841 1.0109 1.0394	Axial Level 9 0.624 0.6775 0.7463 0.6918 0.7629 0.9067	×
Normal	Axial Level 1 0.6207 0.6731 0.7409 0.6673 0.6997 0.9156 0.6624	Axial Level 2 0.9219 0.9356 0.951 0.9204 0.9573 1.052 0.8937	Axial Level 3 1.1542 1.1316 1.1086 1.1255 1.1153 1.0771 1.11	Axial Level 4 1.2981 1.2554 1.2013 1.2178 1.1832 1.0481 1.2344	Axial Level 5 1.3498 1.3011 1.2339 1.1902 1.0141 1.2631	Axial Level 6 1.301 1.2592 1.2047 1.2597 1.206 1.0196 1.2523	کل ۸: ثبت Axial Level 7 1.1542 1.1326 1.104 1.1851 1.1401 1.0437 1.1594	Axial Level 8 0.9261 0.937 0.9488 0.9841 1.0109 1.0394 0.9928	Axial Level 9 0.624 0.6775 0.7463 0.6918 0.7629 0.9067 0.7109	×
Normal	Axial Level 1 0.6207 0.6731 0.7409 0.6673 0.6997 0.9156 0.6624 0.8739	Axial Level 2 0.9219 0.9356 0.951 0.9204 0.9573 1.052 0.8937 1.0285	Axial Level 3 1.1542 1.1316 1.1255 1.1153 1.0771 1.11 1.09	Axial Level 4 1.2981 1.2554 1.2013 1.2178 1.1832 1.0481 1.2344 1.0578	Axial Level 5 1.3498 1.3011 1.2339 1.2394 1.1902 1.0141 1.2631 1.0388	Axial Level 6 1.301 1.2592 1.2047 1.2597 1.206 1.0196 1.2523 1.0551	کل ۸: ثبت Axial Level 7 1.1542 1.1326 1.104 1.1851 1.1401 1.0437 1.1594 1.084	Axial Level 8 0.9261 0.937 0.9488 0.9841 1.0109 1.0394 0.9928 1.0403	Axial Level 9 0.624 0.6775 0.7463 0.6918 0.7629 0.9067 0.7109 0.8749	×
Normal	ized Relative Axia Axial Level 1 0.6207 0.6731 0.7409 0.6673 0.6997 0.9156 0.6624 0.8739	Axial Level 2 0.9219 0.9356 0.951 0.9204 0.9573 1.052 0.8937 1.0285	Axial Level 3 1.1542 1.1316 1.1086 1.1255 1.1153 1.0771 1.11 1.09	Axial Level 4 1.2981 1.2554 1.2013 1.2178 1.1832 1.0481 1.2344 1.0578	Axial Level 5 1.3498 1.3011 1.2339 1.2394 1.1902 1.0141 1.2631 1.0388	Axial Level 6 1.301 1.2592 1.2047 1.2597 1.206 1.0196 1.2523 1.0551	کل ۸: ثبت Axial Level 7 1.1542 1.1326 1.104 1.1851 1.1401 1.0437 1.1594 1.084	Axial Level 8 0.9261 0.937 0.9488 0.9841 1.0109 1.0394 0.9928 1.0403	Axial Level 9 0.624 0.6775 0.7463 0.6918 0.7629 0.9067 0.7109 0.8749	×
Normal	ized Relative Axia Axial Level 1 0.6207 0.6731 0.6673 0.6997 0.9156 0.6624 0.8739	Axial Level 2 0.9219 0.9356 0.951 0.9204 0.9573 1.052 0.8937 1.0285	Axial Level 3 1.1542 1.1316 1.1086 1.1255 1.1153 1.0771 1.11 1.09	Axial Level 4 1.2981 1.2554 1.2013 1.2178 1.1832 1.0481 1.2344 1.0578	Axial Level 5 1.3498 1.3011 1.2394 1.1902 1.0141 1.2631 1.0388	Axial Level 6 1.301 1.2592 1.2047 1.2597 1.206 1.0196 1.2523 1.0551	كى ٨: ثبت Axial Level 7 1.1542 1.1326 1.104 1.1851 1.1401 1.0437 1.1594 1.084	Axial Level 8 0.9261 0.937 0.9488 0.9841 1.0109 1.0394 0.9928 1.0403	Axial Level 9 0.624 0.6775 0.7463 0.7918 0.7629 0.9067 0.7109 0.8749	×
Normal	ized Relative Axia Axial Level 1 0.6207 0.6731 0.7409 0.6673 0.6997 0.9156 0.6624 0.8739	Axial Level 2 0.9219 0.9356 0.951 0.9204 0.9573 1.052 0.8937 1.0285	Axial Level 3 1.1542 1.1316 1.1086 1.1255 1.1153 1.0771 1.11 1.09	Axial Level 4 1.2981 1.2554 1.2013 1.2178 1.1832 1.0481 1.2344 1.0578	Axial Level 5 1.3498 1.3011 1.2339 1.2394 1.0141 1.2631 1.0388	Axial Level 6 1.301 1.2592 1.2047 1.2597 1.206 1.0196 1.2523 1.0551	Axial Level 7 1.1542 1.1326 1.104 1.1851 1.1401 1.0437 1.1594 1.084	Axial Level 8 0.9261 0.937 0.9488 0.9841 1.0109 1.0394 0.9928 1.0403	Axial Level 9 0.624 0.6775 0.7463 0.6918 0.7629 0.9067 0.7109 0.8749	×
Normal	Axial Level 1 0.6207 0.6731 0.7409 0.6673 0.6997 0.9156 0.6624 0.8739	Axial Level 2 0.9219 0.9356 0.951 0.9204 0.9573 1.052 0.8937 1.0285	Axial Level 3 1.1542 1.1316 1.1086 1.1255 1.1153 1.0771 1.11 1.09	Axial Level 4 1.2981 1.2554 1.2013 1.2178 1.1832 1.0481 1.2344 1.0578	Axial Level 5 1.3498 1.3011 1.2339 1.1902 1.0141 1.2631 1.0388	Axial Level 6 1.301 1.2592 1.2047 1.2597 1.206 1.0196 1.2523 1.0551	کل ۸: ثبت Axial Level 7 1.1542 1.1326 1.104 1.1851 1.1401 1.0437 1.1594 1.084	Axial Level 8 0.9261 0.937 0.9488 0.9841 1.0109 1.0394 0.9928 1.0403	Axial Level 9 0.624 0.6775 0.7463 0.6918 0.7629 0.9067 0.7109 0.8749	×
Normal	Axial Level 1 0.6207 0.6731 0.7409 0.6673 0.6997 0.9156 0.6624 0.8739	Axial Level 2 0.9219 0.9356 0.951 0.9204 0.9573 1.052 0.8937 1.0285	Axial Level 3 1.1542 1.1316 1.1086 1.1255 1.1153 1.0771 1.11 1.09	Axial Level 4 1.2981 1.2554 1.2013 1.2178 1.1832 1.0481 1.2344 1.0578	Axial Level 5 1.3498 1.3011 1.2339 1.2394 1.1902 1.0141 1.2631 1.0388	Axial Level 6 1.301 1.2592 1.2047 1.206 1.0196 1.2523 1.0551	Axial Level 7 1.1542 1.1326 1.104 1.1851 1.1401 1.0437 1.1594 1.084	Axial Level 8 0.9261 0.937 0.9488 0.9841 1.0109 1.0394 0.9928 1.0403	Axial Level 9 0.624 0.6775 0.7463 0.6918 0.7629 0.9067 0.7109 0.8749	×
Normal	ized Relative Axia Axial Level 1 0.6207 0.6731 0.6673 0.6997 0.9156 0.6624 0.8739	Axial Level 2 0.9219 0.9356 0.951 0.9204 0.9573 1.052 0.8937 1.0285	Axial Level 3 1.1542 1.1316 1.1086 1.1255 1.1153 1.0771 1.111 1.09	Axial Level 4 1.2981 1.2554 1.2013 1.2178 1.1832 1.0481 1.2344 1.0578	Axial Level 5 1.3498 1.3011 1.2339 1.2394 1.1902 1.0141 1.2631 1.0388	Axial Level 6 1.301 1.2592 1.2047 1.2597 1.206 1.0196 1.2523 1.0551	Axial Level 7 1.1542 1.1326 1.104 1.1851 1.1401 1.0437 1.1594 1.084	Axial Level 8 0.9261 0.937 0.9488 0.9841 1.0109 1.0394 0.9928 1.0403	Axial Level 9 0.624 0.6775 0.7463 0.6918 0.7629 0.9067 0.7109 0.8749	×

شکل ۹: تعیین ضرایب توزیع توان محوری در زمانهای مختلف

در منوی سمت چپ صفحه، برگههای انتخابی برای وارد کردن تاریخچه عملکرد میله سوخت در نظر گرفته شده است. در این قسمت کاربر می تواند از دو طریق جدول و نمودار مقادیر مورد نظر برای حل مسأله را تعیین کند. تاریخچه های تغییرات توان خطی میله سوخت، دمای ورودی سیال، شار جرمی سیال، فشار سیال خنک کننده و نیز شکل محوری توان میله سوخت پارامترهایی هستند که با انتخاب صفحات منتاظر مطابق شکل ۱۰ در

											انی است.
PARS											- 8
Save Input	ut As	New	Input	Open Inpu	t 💭	Run		Save Plot	Technica	al Report	About
Step 3 of 3: Operating H	listor	у									
End Time of Cycle (day): 1000											
					Number of	Axial Power Shape:	5		Normalized R	Relative Axial Power	
Maximum Time Step Limit in Calculating	Time Step	ps (day): 2			Number of a	Axial Power Shape: Results only on Inp	5 out Time Steps		Normalized R	Relative Axial Power	
Maximum Time Step Limit in Calculating	Time Step	ps (day): 2		_	Number of a	Axial Power Shape: Results only on Inp	5 out Time Steps		Normalized R	Relative Axial Power	
Maximum Time Step Limit in Calculating	Time Step	ps (day): 2 Time (day)	Value (W/cm)		Number of a Save the	xial Power Shape: Results only on In	5 out Time Steps		Normalized R	Relative Axial Power	
Maximum Time Step Limit in Calculating Average Linear Power History	Time Step No. 1 2	Time (day): 2 Time (day) 0 200	Value (W/cm) 170 180		Number of a	axial Power Shape: Results only on In	5 out Time Steps		Normalized R	Relative Axial Power	
Maximum Time Step Limit in Calculating Average Linear Power History Coolant Inlet Temperature History	Time Step No. 1 2 3	ps (day): 2 Time (day) 0 200 400	Value (W/cm) 170 180 190		Number of A	axial Power Shape:	5 out Time Steps		Normalized R	Relative Axial Power	
Maximum Time Step Limit in Calculating Average Linear Power History Coolant Inlet Temperature History Coolant Mass Flux History	Time Step No. 1 2 3 4	ps (day): 2 Time (day) 0 200 400 600	Value (W/cm) 170 180 190 200	(cm)	Number of A	wal Power Shape:	5 out Time Steps		Normalized R	Relative Axial Power	
Maximum Time Step Limit in Calculating Average Linear Power History Coolant Inlet Temperature History Coolant Mass Flux History	Time Step No. 1 2 3 4 5	Time (day): 2 0 200 400 600 800	Value (W/cm) 170 180 190 200 190	r (W/cm)	Number of <i>J</i> Save the 250 - 200 -	xial Power Shape:	5 out Time Steps		Normalized R	Relative Axial Power	•
Maximum Time Step Limit in Calculating Average Linear Power History Coolant Inlet Temperature History Coolant Mass Flux History Coolant Pressure History	Time Step No. 1 2 3 4 5	Time (day) 0 200 400 600 800	Value (W/cm) 170 180 190 200 190	ower (W/cm)	Number of <i>J</i> Save the 250 - 200 - 150 -	xial Power Shape:	5 out Time Steps		Normalized R	Relative Axial Power	
Maximum Time Step Limit in Calculating Average Linear Power History Coolant Inlet Temperature History Coolant Mass Flux History Coolant Pressure History Fuel Rod Axial Power Shape History	Time Step No. 1 2 3 4 5	Time (day): 2 0 200 400 600 800	Value (W/cm) 170 180 190 200 190	ar Power (Wicm)	Number of J Save the 250 200 150	xial Power Shape:	5 out Time Steps		Normalized R	lelative Axial Power	
Maximum Time Step Limit in Calculating Average Linear Power History Coolant Inlet Temperature History Coolant Mass Flux History Coolant Pressure History Fuel Rod Axial Power Shape History	Time Step No. 1 2 3 4 5	rs (day): 2 Time (day) 0 200 400 600 800	Value (W/cm) 170 180 190 200 190	Linear Power (W/cm)	Number of <i>A</i> Save the 250 - 200 - 150 - 100 -	xial Power Shape:	5 sut Time Steps		Normalized R	elative Axial Power	
Maximum Time Step Limit in Calculating Average Linear Power History Coolant Inlet Temperature History Coolant Mass Flux History Coolant Pressure History Fuel Rod Axial Power Shape History	Time Step No. 1 2 3 4 5	ps (day): 2 Time (day) 0 200 400 600 800	Value (W/cm) 170 180 190 200 190	age Linear Power (W/cm)	Number of <i>J</i> Save the 200 - 150 - 100 -	xial Power Shape:	5 sut Time Steps		Normalized R	lelative Axial Power	
Maximum Time Step Limit in Calculating Average Linear Power History Coolant Inlet Temperature History Coolant Mass Flux History Coolant Pressure History Fuel Rod Axial Power Shape History	Time Step No. 1 2 3 4 5	ps (day): 2 Time (day) 0 200 400 600 800	Value (W/cm) 170 180 190 200 190	verage Linear Power (W/cm)	Number of <i>J</i> Save the 200 - 150 - 100 -	xial Power Shape:	5 but Time Steps		Normalized R	elative Axial Power	
Maximum Time Step Limit in Calculating Average Linear Power History Coolant Inlet Temperature History Coolant Mass Flux History Coolant Pressure History Fuel Rod Axial Power Shape History	Time Step No. 1 2 3 4 5	ps (day): 2 Time (day) 0 200 400 600 800	Value (W/cm) 170 180 190 200 190	Average Linear Power (W/cm)	Number of J Save the 200 - 150 - 100 - 50 -	xial Power Shape:	5 aut Time Steps		Normalized R	elative Axial Power	
Maximum Time Step Limit in Calculating Average Linear Power History Coolant Inlet Temperature History Coolant Mass Flux History Coolant Pressure History Fuel Rod Axial Power Shape History	No. 1 2 3 4 5	ps (day): 2 Time (day) 0 200 400 600 800	Value (W/cm) 170 180 190 200 190	Average Linear Power (Wicm)	Number of J Save the 250 - 200 - 150 - 100 - 50 -	xial Power Shape:	5 uut Time Steps		Normalized R	lelative Axial Power	

شکل ۱۰: انتخاب صفحات برای تعیین مقادیر تاریخچه کارکرد سوخت

مقادیر وارد شده در جدول بالفاصله به صورت متناظر در نمودار نشان داده می شود. همچنین مطابق شکل ۱۱ به صورت متقابل با کلیک کردن در هر نقطه از محیط نمودار نقطه متناظر با آن در جدول به صورت صعودی وارد می گردد. با کلیک راست روی اعداد مد نظر در نمودار، مطابق شکل ۱۱ منویی برای کاربر باز می شود که از طریق آن می تواند اقدام به حذف نقطه، Undo یا Redo کردن عملیاتی که بر روی نقاط نمودار انجام داده، قفل کردن نقطهی مورد نظر و یا تغییر اندازه نقاط روی نمودار از طریق گزینه Setting نماید. نقاط نقطه چین در صفحه نمودار همچنین نماینده تاریخچه سایر نقاطی است که در دیگر برگههای شکل ۱۰ انتخاب شده و در جدول مربوطه وارد شدهاند. حذف نقاط از طریق جدول و انتخاب شماره ردیف مورد نظر و فشردن شستی Delete بر روی صفحه کلید نیز امکان پذیر است.

در انتها پس از کامل شدن دادههای ورودی، کاربر با فشردن شستی Confirm Input در پایین صفحه، ورودیهای کد را تأیید کرده و پیغامی دریافت میکند که به کاربر اعلام میکند برنامه برای اجرا آماده است. در آخر

۹- ملاحظات مربوط به ثبت دادهها و تغییرات ناگهانی توان و شرایط سیال

لازم به ذکر است که همواره بایستی تناسبی بین توان تولیدی در میله سوخت و توانایی سیستم خنک کننده در برداشت حرارت از میله وجود داشته باشد و با توجه به گستره زیاد آن امکان بررسی توسط کد قبل از اجرا وجود ندارد و عدم رعایت آن توسط کاربر میتواند منجر به دمای بالا در سوخت و دوفاز شدن سیال گردد. در این صورت پس از اجرای کد پیغام خطایی در خروجی کد ظاهر میشود. به طور مثال، چنانچه توان تولیدی زیاد باشد به نحوی که دبی و دمای سیال ورودی متناسب با آن نباشد، سیال دوفاز شدن سیال گردد. در این صورت پس از اجرای کد پیغام خطایی در خروجی کد ظاهر میشود. به طور مثال، چنانچه توان تولیدی زیاد باشد به نحوی که دبی و دمای سیال ورودی متناسب با آن نباشد، سیال دوفاز شده و حتی مافوق گرم میشود که در صورت مافوق گرم شدن اجرای کد متوقف و پیام آن به کاربر نمایش داده میشود. همچنین افزایش و کاهش ناگهانی توان منجر به انبساط و انقباض سوخت و غلاف شده و چنانچه بیش از حد معقول باشد، ممکن است منجر به عدم همگرایی کد در حلقه محاسباتی کوپل حرارتی-مکانیکی شود. در این حالت، نتایج تنها تا قبل از واگرایی به کاربر نمایش داده میشود. در این حالت، ایت تا قبل از واگرایی به کاربر نمایش داده میشود. در این حالت میکن است منجر به عدم همگرایی کد در حلقه انقباض سوخت و غلاف شده و چنانچه بیش از حد معقول باشد، ممکن است منجر به عدم همگرایی کد در حلقه این حالت پیشنهاد میگرد که بازهای زمانی را کوتاه و تغییرات توان و شرایط مرزی نیز به صورت پلههای کوتاه راین حالت پیشنهاد می گردد که بازهای زمانی را کوتاه تر و تغییرات توان و شرایط مرزی نیز به صورت پلههای کوتاه تر در یک سری گامهای فرضی جدید برای ورودی کد تعریف شود. همچنین دمای سیال وارد شده توسط کاربر بایستی کمتر از دمای اشباع در فشار مربوطه باشد.

۱۰- دستهبندی پارامترهای خروجی کد PARS برای ترسیم نتایج

در صفحه خروجیها مطابق شکل ۱۳ کاربر سه برگه متفاوت برای رسم نمودارها در سمت چپ مشاهده مینماید. در هر یک از برگهها لازم است ابتدا نوع نمودارهای مورد نظر برای هر یک خروجیهای کد از طریق کلیدهای تعیین شده توسط کاربر انتخاب شود تا نمودارهای متناظر نمایش داده شوند.

شکل ۱۳: صفحه خروجیهای برنامه

Help

AN

۱۰–۱۰ پارامترهای عمومی و رسم نمودار تغییرات در طول زمان

< Back Next >

Cancel

این پارامترها مربوط به سطح محوری خاص یا گره شعاعی خاصی نبوده و ترسیم آنها تنها بر حسب زمان مطلوب میباشد. در اولین برگه با عنوان Plot During the Time با انتخاب هر یک از این پارامترها به صورت گروهی و یا به صورت تکی، نمودار متناظر در سمت راست صفحه نمایش داده می شود. این دسته از خروجی ها در جدول شماره ۲ آمده است.

توضيحات	واحد اندازهگیری پارامتر	نام پارامتر	شماره
فشار گاز	MPa	Gas pressure	١
حجم فضای خالی میله	cm ³	Void volume	۲
طول ارتفاع فعال سوخت	cm	Fuel stack length	٣
افزایش طول محوری غلاف ناشی از نمامی پدیده های تاثیرگذار	mm	Clad elongation	۴

جدول شماره ۲: پارامترهای عمومی برای رسم نمودار تغییرات در طول زمان

توضيحات	واحد اندازهگیری پارامتر	نام پارامتر	شماره
کسر رهایش گاز	%	Total fission gas release	۵
سهم گاز هليوم	-	Helium fraction	Ŷ
سهم گاز زنون	-	Xenon fraction	۷
سهم گاز کریپتون	-	Krypton fraction	٨
دمای محفظه بالای میله سوخت	К	Upper plenum gas temperature	٩
دماي محفظه پايين ميله سوخت	К	Lower plenum gas temperature	١.

پارامترهایی که از یک جنس بوده و واحد اندازه گیری یکسانی دارند را میتوان همزمان با هم انتخاب و در یک نمودار مشاهده کرد. سایر پارامترها هر یک به صورت جداگانه در نمودار ترسیم می گردند. شکل شماره ۱۴ پارامترهایی را که به صورت همزمان بر حسب زمان قابل رسم هستند در یک مستطیل نشان میدهد.

۱۰–۲– ترسیم نمودار دینامیک تغییر پارامترهای خروجی در جهت محوری

دسته دیگری از پارامترهای خروجی به گونهای هستند که تغییرات آنها هم در جهت محوری و هم در طول زمان و هم با تغییر در مقدار فرسایش سوخت در سوخت اتفاق میافتد. در برگه دوم در صفحه خروجیها مطابق شکل ۱۵ در قسمت Select Plot Type کاربر ابتدا نوع نمودار مورد نظر خود را مشخص مینماید. جدول شماره ۳ لیست پارامترهای خروجی را که تغییرات آنها در جهت محوری با زمان در نمودار قابل ترسیم است، نشان میدهد.

توضيحات	واحد اندازهگیری پارامتر	نام پارامتر	شماره
تنش محیطی غلاف	MPa	Cladding hoop stress	١
تنش محوری غلاف	MPa	Cladding axial stress	٢
کرنش محیطی غلاف	m/m	Cladding hoop strain	٣
کرنش محوری غلاف	m/m	Cladding axial strain	k
كرنش شعاعي غلاف	m/m	Cladding radial strain	۵
شعاع خارجي سوخت	mm	Fuel outer radius	۶
شعاع داخلى غلاف	mm	Cladding inner radius	۷
جابجایی سوخت ناشی از ترک	μm	Fuel relocation	٨
ضخامت شکاف گازی	μm	gap thickness	٩
فشار تماسی بین سوخت و غلاف	MPa	Clad and fuel Contact pressure	١.
ضخامت لايه اكسيد	μm	Oxide layer thickness	11
غلظت هيدروژن	ppm	Hydrogen concentration	١٢
میزان فرسایش	MWd/kgU	Burn up	١٣
دمای سیال	К	coolant temperature	14

جدول شماره ۳: پارامترهای خروجی متغیر با زمان یا Burn up در جهت محوری

())))

K Fuel average تمای مرکز سوخت دمای مرکز سوخت K Fuel center تمای سطح خارجی سوخت K فالی مالی مالی مالی مالی مالی مالی مالی م	temperature ¹ temperature ¹ temperature ¹ :emperature ¹ :emperature ¹
K Fuel center Tuel surface K Fuel surface K Clad inner surface K Cladding outer surface K Cladding oxide K Cladding oxide K Cladding oxide K Crud to K Crud to M/m ² K Gap heat transfe Gap heat transfe Solid contact heat tran - Radiation heat tran - More to the total tota	temperature ¹ temperature ¹ :emperature ¹ :emperature ¹ :emperature ¹
K Fuel surface ندمای سطح خارجی سوخت K Clad inner surface K ندمای سطح خارجی غلاف K Cladding outer surface K Cladding oxide K Cladding oxide K Cladding oxide K Crud t K Crud t M/m²K Gap heat transfe سهم انتقال حرارت شكاف سهم انتقال حرارت تماسی سهم انتقال حرارت تماسی Solid contact heat trans Solid contact heat trans سهم انتقال حرارت تماسی سهم انتقال حرارت تماسی سهم انتقال حرارت تشه سهی سهم انتقال حرارت تماسی سهم انتقال حرارت تشه سهی سهم انتقال حرارت تشه سهی	temperature ¹ temperature ¹ :emperature ¹ :emperature ⁷
K Clad inner surface دمای سطح خارجی غلاف K Cladding outer surface K Cladding outer surface K Cladding oxide t K K Cladding oxide t K Cladding oxide t K Cladding oxide t K Cladding oxide t K Crud t Crud t M/m²K Gap heat transfe fraction of conduction h K - Solid contact heat tran Radiation heat tran K - Radiation heat tran - K - K - K - K - K - K - K - K - K - K - K - K - K - K - K - K - K - K </td <td>temperature ¹ temperature ¹ temperature ¹</td>	temperature ¹ temperature ¹ temperature ¹
K Cladding outer surface K Cladding oxide K Crud t M/m²K Gap heat transfer Gib (crud t) M/m²K Gap heat transfer Gib (crud t) magn litable c(l(tr aclus) K M/m²K Gap heat transfer Gib (crud t) magn litable c(l(tr aclus) magn litable c(l(tr aclus) Solid contact heat transfer magn litable c(l(tr aclus) magn litable c(l(tr aclus) Magnetic (crud t) magnetic (crud t) magnetic (crud t) magnetic (crud t) Gap heat transfer magnetic (crud t) magnetic (crud t) magnetic (crud t) Gas and (crud t) magnetic (crud t) magnetic (crud t) magnetic (crud t) Gas and (crud t) magnetic (crud t) magnetic (crud t) magnetic (crud t) Gas and (crud t) magnetic (crud t) magnetic (crud t) magnetic (crud t) Gas and (crud t) magnet	temperature ¹ :emperature ^Y
K Cladding oxide K Cladding oxide K Crudy K Crudy K Crudy M/m ² K Gap heat transfer Gap heat transfer magn litility of transfer Gap heat transfer magn litily of transfer	temperature ^Y
K Crud Crud دمای سطح خارجی لایه خمیری نظریب انتقال حرارت شکاف W/m²K Gap heat transfer ریب انتقال حرارت شکاف ریب انتقال حرارت مدایتی - هجم انتقال حرارت مدایتی - Solid contact heat tran - مجم انتقال حرارت تماسی - Radiation heat tran - هجم انتقال حرارت تماسی - هجم انتقال حرارت تشعفیم - هجم انتقال حرارت تماسی - هجم انتقال حرارت تشعفیم - هجم انتقال حرارت تشعفیم - هجم انتقال حرارت تشعفیم - هجم انتقال حرارت تماسی - هجم انتقال حرارت تشعفیم - هجم	
W/m²K Gap heat transfe سهم انتقال حرارت شكاف - fraction of conduction h - سهم انتقال حرارت هدايتى - Solid contact heat tran - هم انتقال حرارت تماسى - Radiation heat tran - هم انتقال حرارت تماسى - هم انتقال حرارت تماسى - هم انتقال حرارت تشعشعى - هم انتقال حرارت شعار مارج المارج - هم انتقال حرارت تماسى - هم انتقال حرارت تماسى - هم انتقال حرارت تماسى - هم انتقال حرارت تشعشعى - هم انتقال حرارت تشعشعى - هم انتقال حرارت تشعشعى - هم انتقال حرار	۲ remperature
- سهم انتقال حرارت هدایتی fraction of conduction h Solid contact heat tran Solid contact heat tran Radiation heat tran Radiation heat tran Save Plot کو ایت تشعشعی هده اینتقال حرارت تشعشعی Save Input که اینتقال حرارت تشعشعی Save Input که اینتقال حرارت تشعشعی Save Plot کو اینت Save Plot کو Save Input Save Save Save Save Save Save Save Save	۲ coefficient
- Solid contact heat tran Solid contact heat tran Radiation heat tran Radiation heat tran PARS PARS Parse	eat transfer
Radiation heat tran • Radiation heat tran • PARS • Save Input	sfer fraction
PARS Save Input Save Input As Open Input Open Input Open Input Open Input Save Plot Save P	sfer fraction
Save Input Save Input As Image: Company C	- 5 ×
Pot during the Time Mot during the Time in Astal Levels Pot during the Time for Astal and Radial Levels Select Plot Type:	eport About
Cladding Aula Stress Cladding Aula Strain Cladding Aula Strain Cladding Aula Strain Cladding Aula Strain Ē 0.6	- Clading Hoop Stress - Clading Avid Stress - Clading Avid Stress - Clad and Fuel Contact Pressure
Coolant Temperature Ciad Uner Surface Temperature Ciad Uner Surface Temperature Ciad Outer Surface Temperature Ciad Outer Surface Temperature Ciad Outer Surface Temperature Ciad Outer Temperature Coolant Temperature	
Praction of Gap Conduction Heat Transfer Praction of Gap Radiation Meat Transfer Transfer Praction of Gap Solid Contact Heat Transfer Stress (MPa)	
○ Oxide Layer Thickness ○ Hydrogen Concentration ○ Burn Up ○ Gap Heat Transfer Coefficient	74 120
Hep < Back	74 120 Playbad Speed Nome
	74 120 Playbak.Speed Normal
۱۰: رسم نمودار دینامیک تغییرات پارامتر متغیر با زمان در جهت محوری	74 120 Pluptadi Speed Normal V

۱۰–۲–۱۰ ترسیم نمودار دینامیک تغییرات پارامتر در جهت محوری با گذشت زمان

در این حالت کاربر میتواند انتخاب کند که تغییرات پارامتر یا پارامترهای مورد نظر خود را هم در جهت محوری و هم در طول زمان به صورت دینامیک مشاهده کند. بدین منظور، با انتخاب گزینه Parameter axial Play و هم در طول زمان به صورت دینامیک مشاهده کند. بدین منظور، با انتخاب گزینه Play العرب با عمودن نمودار، تغییرات پارامتر مورد نظر را در جهت محوری و برای گامهای زمانی مختلف بهصورت دینامیک مشاهده مینماید. در هر لحظه از تغییرات نمودار کاربر میتواند با کلیک بر روی شستی Pause نظر در ادر یک گام زمانی معین نگاه داشته و تغییرات پارامتر را تنها در جهت محوری بررسی کند. مقادیر پارامتر مورد نظر در محور افقی و تغییرات سطوح محوری در محور عمودی دیده میشوند.

۱۰-۲-۲- ترسیم نمودار استاتیک تغییر پارامتر در طول زمان برای یک سطح محوری معین

در این حالت کاربر مطابق شکل ۱۶ با انتخاب گزینه selected axial level و نیز تعیین سطح محوری و پارامترهای مورد نظر میتواند تغییرات پارامتر یا پارامترهای مد نظر خود را به طور همزمان در یک سطح محوری معین در طول زمان به صورت استاتیک مشاهده نماید. محور افقی در این نوع از ترسیم نماینده تغییرات زمان و محور عمودی نشاندهنده تغییرات مقادیر پارامتر مورد نظر است. همچنین کاربر با تغییر دادن سطوح محوری مد نظر خود تغییرات پارامتر در طول زمان را برای آن سطح محوری خواهد دید.

شکل ۱۶: رسم نمودار استاتیک برای تغییر پارامتر با زمان در یک جهت محوری معین ۲-۱۰-۳- ترسیم نمودار استاتیک تغییر پارامتر برحسب فرسایش سوخت برای یک سطح محوری معین

این شکل از نمودار، تغییرات پارامتر را در یک سطح محوری معین بر حسب فرسایش سوخت در آن سطح محوری نشان میدهد. مطابق شکل ۱۷ کاربر با انتخاب گزینه Parameter vs burn up changes in a selected را axial level و نیز تعیین سطح محوری و پارامترهای مورد نظر میتواند تغییرات پارامتر یا پارامترهای مد نظر خود را به طور همزمان در یک سطح محوری معین نسبت به تغییرات فرسایش سوخت به صورت استاتیک مشاهده نماید. محور افقی در این نوع از ترسیم نماینده میزان فرسایش سوخت و محور عمودی نشاندهنده تغییرات مقادیر پارامتر مورد نظر است. همچنین کاربر با تغییر دادن سطوح محوری مد نظر خود، تغییرات پارامتر بر حسب فرسایش سوخت را برای آن سطح محوری خواهد دید.

شکل ۱۷: رسم نمودار تغییرات پارامتر با تغییرات Burn up در یک سطح محوری معین ۱۰–۳– ترسیم نمودار دینامیک تغییرات پارامتر خروجی در جهت شعاعی با گذشت زمان در یک سطح محوری معین

تغییرات برخی از پارامترهای خروجی در یک سطح محوری معین در جهت شعاعی با گذشت زمان در این بخش قابل مشاهده است. به این منظور کاربر لازم است مطابق شکل ۱۸ با انتخاب گزینه Plot during the Time بخش قابل مشاهده است. به این منظور کاربر لازم است مطابق شکل ۱۸ با انتخاب گزینه Por Axial and Radial Level تغییرات آن پارامتر را در راستای شعاعی با گذشت زمان در آن سطح محوری و پارامتر مورد نظر را انتخاب کرده و متوقف کردن نمودار در هر گام زمانی مورد نظر کاربر میتواند تغییرات را به صورت استاتیک در آن مقطع زمانی بررسی نماید. محور افقی در این نوع از ترسیم نماینده فاصله شعاعی و محور عمودی نشاندهنده تغییرات مقادیر پارامتر مورد نظر است. همچنین با تغییر سطوح محوری مد نظر توسط کاربر تغییرات پارامتر در جهت شعاعی برای آن سطح محوری رسم خواهد شد. لازم به ذکر است از آنجا که فاصله شعاعی، خود با گذشت زمان تغییرات بسیار کمی خواهد داشت در ترسیم نمودار، فواصل شعاعی برای اولین گام زمانی محاسبات مد نظر قرار گرفته است. جدول

جدول شماره ۴: پارامترهای خروجی متغیر با زمان در جهت شعاعی							
توضيحات	واحد اندازهگیری	نام پارامتر	شماره				
کرنش کلی سوخت ناشی از تورم، چگالش و انبساط حرارتی	پارامتر m/m	Fuel strain due to swelling, densification and thermal expansion	١				
توزیع نرمال شده شعاعی توان	-	Normalized radial power profile	٢				
توزیع شعاعی دما در میله سوخت	m/m	Radial distribution of temperature in the fuel rod	٣				

شکل ۱۸: نمودار دینامیک تغییرات پارامتر در جهت شعاعی با زمان در یک سطح محوری معین ۱۱- ذخیره نمودن نمودار

در صفحه خروجی ها پس از مشاهده نمودار کاربر می تواند با کلیلک بر روی شستی Save Plot از منوی بالای صفحه، نمودار مورد نظر خود را به صورت فایل jpg یا png ذخیره نماید. شکل ۱۹ نحوه ذخیرهسازی نمودارها را نشان میدهد. همچنین با کلیلک بر روی منوی Save Results در بالای نمودار، مقادیر خروجی به صورت فایل متنی ذخيره مي گردد.

, III

شکل ۱۹: ذخیرهسازی نمودارهای خروجی

۱۲- امکانات منوی نرمافزار

در منوی بالای نرم افزار امکان انتخاب شستیهای Save Input برای ذخیرهسازی فایل ورودی به فرمت قابل خواندن برای برنامه، شستی Save Input As برای ذخیرهسازی مجدد فایل ورودی با اسم دلخواه، شستی Open Input برای باز نمودن فایل ورودی که از قبل در برنامه وارد و ذخیره شده است و شستی New Input برای بازگشت به حالت ورودیهای پیشفرض برنامه و ثبت مجدد ورودیهای جدید در نظر گرفته شدهاست. خروجیهای برنامه هم به صورت نمودار و هم بهصورت فایل متنی قابل مشاهده و ذخیرهسازی است و در هر مرحله از برنامه کاربر با فشردن شستیهای ذخیرهسازی تنها ورودی برنامه را برای استفاده مجدد توسط برنامه ذخیره مینماید. کاربر در هر مرحله با کلیک بر روی ایکون Help در منوی پایین برنامه به راهنمای استفادهی کاربر و با فشردن شستی Technical Report به گزارش فنی برنامه دسترسی می یابد. شستی Run در برنامه زمانی اجرا می گردد که کاربر تمامی ۳ مرحله ثبت ورودیها را انجام داده و در نهایت آنها را تأیید نماید. در غیر اینصورت با کلیک بر روی شستی Run به کاربر پیغام داده خواهد شد که ابتدا ورودیها را کامل نموده و تایید نماید و سپس شستی Run را برای اجرای برنامه و انجام محاسبات کلیک کند. شستی Save Plot در صفحات ورودی برنامه غیرفعال بوده و به محض اجرای برنامه و ورود به صفحه رسم نمودارهای خروجی، فعال میشود. در هر مرحله از ثبت ورودیها یا مشاهده خروجیها، کاربر می تواند با برگشت به صفحات قبلی دادههای ورودی را تغییر داده و مجدد برنامه را پس از تایید ورودیها اجرا کند. AN